Теорема. Множество всех лействительных чисел несчетно-

Начало доказательства: допустим, что множество действительных чисел отрезка [0,1] счетно. Тогда все эти числа можно занумеровать натуральными числами: a_1, a_2, \dots, a_n Покроем каждую точку a_1 интервалом G_1 длины 10^{-1} .

Лальше нужно решить задачи с 4 по 7:

Запача 4. Доказать, что при любом л объединение $G_1 \cup G_2 \cup \dots$ G_n не покрывает отрезка [0.1].

Выберем какую-нибуль точку, не покрытую этими интервалами, и обозначим ее через B_{π} .

Задача 5. Локазать, что найдется точка, предельная для множес-

Задача 6. Найдите противоречие в том факте, что точка C покрыта некоторым интервалом G_k

Задача 7. Это противорение доказывает, что множество точек отрезка не может быть счетным. Выведите из этого, что и множество всех действительных чисел несчетно.

Nº4
1/10+1/100+1/1000+...+1/10^(n)<1
1/10*(1+1/10+1/100+...+1/10^(n-1))<1
Sn=a*(1-q^n)/(1-q)
Sn=1/10*(1-1/10^n)/(1-1/10)
Sn=(1-1/10^n)/9
Sn<1

Nº5

для любого найдется своя точка Bn - значит таких точек найдется бесконечно много и все они на отрезке, по ранее доказанной теореме для них всех будет предельная точка С

Nº6

от противного. пусть точка С покрыта некоторым интервалом G_k. В любом интервале, в том числа в G_k найдется бесконечно много точек из множества {B_n}.

Можно утверждать, что точка Вк точно не попадает в G_k. Что будет для верно точек В с номерами большими k? Они не попадут в G_k, т.к. эти точки должны не покрытыми наборами интервалов, в которые в том числе входит G_k. Во множестве G_k могло оказаться лишь конечное число точек В с номерами меньшими k=> точка С не может быть предельной для точек B_k. противоречие с ее предельностью для точек B_k

Nº7

Раз точка С отрезка не накрыта ни одним G_k - у нее не может быть номера в нумерации, которую мы дали всем точкам отрезка. Это противоречит тому, что мы смогли перенумеровать все точки отрезка.

